C. U. SHAH UNIVERSITY Winter Examination-2022

Subject Name: Topology

Subject Code: 5S	C01TOP1	Branch: M.Sc. (Mathematics)		
Semester: 1	Date: 05/01/2023	Time: 11:00 To 02:00	Marks: 70	

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1		Attempt the Following questions	(07)
-	a	. Define: Topology	(02)
	b	Is it true that $(A \cup B)^\circ \neq A^\circ \cup B^\circ$? Justify your answer.	(02)
	c.	Define: Lower limit topology.	(01)
	d	• $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b, c\}\}$ and $A = \{a, c\}$ then find A° .	(02)
Q-2		Attempt all questions	(14)
	a.	If $X = \{a, b, c\}$, and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ then prove that	(06)
		(X, τ) is topological space. Also find all the τ - closed subset of X.	
	b.	Let (X, τ) is topological space then show that any finite union of closed sets is closed.	(05)
	c.	Let (R, τ_n) is topological space. And $A = (0,1)$ then find A', \overline{A} and BdA .	(03)
		OR	
0-2		Attempt all questions	(14)
τ-	a.	State and prove Co-finite topology	(05)
	b.	Let Y be a subspace of X then prove that a set A is closed in Y iff	(07)
		$A = Y \cap C$. Where C is closed in X.	
	c.	Define: Door Space with example.	(02)
Q-3		Attempt all questions	(14)
c	a.	State and prove Subspace Topology.	(05)
	b.	Let (X, τ) be a topological space. and A, B be two subsets of X then prove	(04)
		that	
		(i) $X^{\circ} = X, \ \phi^{\circ} = \phi$	
		(ii) If $A \subset B$ then $A^{\circ} \subset B^{\circ}$	
		(iii) $(A \cap B)^\circ = A^\circ \cap B^\circ$	
	c.	Let X be a topological space and β be the basis for the set X. Define	(05)
		$\tau = \{U/each \ x \in U \exists B \in \beta \text{ such that } x \in B \subset U\}$ then Prove that τ is topology on <i>X</i> .	()

Q-3		Attempt all questions	(14)
c	a.	Let (X, τ) be a topological space. And let $A \subseteq X$. Then prove that $\overline{A} = A \sqcup A'$	(06)
	b.	Let (X, τ) be a topological space and $A, B \subset X$ then show that (i) $Bd(A \cup B) \subset BdA \cup BdB$ (ii) $Bd(A \cap B) \subset BdA \cup BdB$	(06)
	c.	Let (X, τ) be a topological space and $A, B \subset X$ then show that $ext(A \cup B) = ext A \cap ext B$	(02)
		SECTION – II	
Q-4		Attempt the Following questions	(07)
•	a	Define: Continuous Function.	(02)
	b	• State Pasting Lemma.	(02)
	с	Define Compact space.	(02)
	d	• True or false: Every T_1 – space is T_2 – space.	(01)
Q-5		Attempt all questions	(14)
	a.	Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{b, c\}\}$, and $Y = \{1, 2, 3\}, \tau_2 =$	(05)
		$\{\phi, Y, \{2\}, \{1,3\}\}$ Is $f: X \to Y$ Homeomorphism. Define by $f(a) =$	
		$(\phi, f, (c)) = (f, (c)) = 1.$	
	b.	Prove that Homeomorphism is an equivalence relation.	(06)
	c.	Show that Projection map are continuous.	(03)
		OR	
Q-5		Attempt all questions	(14)
	a.	Prove that continuous image of compact set is compact.	(07)
	b.	Prove that every closed subset of compact space is closed.	(05)
	c.	Define T_4 Space with example.	(02)
Q-6		Attempt all questions	(14)
	a.	Prove that every compact subset of T_2 - space is closed.	(07)
	b.	State and prove Sequence lemma.	(07)
0 (OR OR	
Q-6		Attempt all Questions	(14)
e t	a.	Prove that a topological space (X, τ) is T_1 - space iff $\{x\}$ is closed for $\forall x \in X$.	(05)
	b.	Let (X, τ_1) and (Y, τ_2) be topological space. If $f: X \to Y$ be continuous	(05)
		function then so that $x_n \to x \Rightarrow f(x_n) \to f(x)$ and converse hold if X is Metrizable.	
	c.	Let (X, τ) is a topological space and $A \subset X$, then $x \notin \overline{A}$ iff there exist an open set <i>U</i> containing <i>x</i> that does not intersect <i>A</i> .	(04)

